ANNUAL EVALUATION REPORT 2005

State of Texas

Arquimedes Ruiz Columbié

Active Influence & Scientific Management

Cloud seeding operations 2005 began over Texas Weather Modification target area in February. This annual report serves as a summary of results. A total of **494 clouds** were seeded and identified by TITAN in **184 target area operational days**. Table 1 in page 1 summarizes the general figures:

Table 1 Generalities

First operational day: **February 22nd, 2005 (WTWMA)** Last operational day: **October 31st, 2005 (SWTREA and STWMA)**)

Number of operational days: 184 (175 over Texas)

According to the daily reports operational days were qualified as:

Forty-five with excellent performance Sixty-seven with very good performance Fifty-six with good performance Ten with fair performance Six with poor performance

Thirty-one with non proper data

Number of seeded clouds: 494

(219 small seeded clouds, 146 large seeded clouds, 111 type B seeded clouds, and 18 npf))

Missed Opportunities: 9 (1.8 % of the seedable conditions)

Small Clouds

Table 2 shows the results from the classic TITAN evaluation for the 219 small seeded clouds which obtained proper control clouds.

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	70 min	45 min	1.55	55 (57)
Area	63.0 km ²	38.7 km ²	1.63	63 (29)
Volume	175.8 km^3	129.7 km ³	1.36	36 (30)
Top Height	7.8 km	7.4 km	1.05	5 (3)
Max dBz	50.0	49.5	1.01	1 (2)
Top Height of max dBz	4.5 km	4.6 km	0.98	- 2 (-4)
Volume Above 6 km	17.3 km ³	15.2 km^3	1.14	14 (40)
Prec.Flux	422.6 m^3/s	$306.5 \text{ m}^3/\text{s}$	1.38	38 (32)
Prec.Mass	1687.7 kton	827.1 kton	2.04	104 (88)
CloudMass	140.6 kton	101.0 kton	1.39	39 (35)
η	12.0	8.2	1.46	46 (40)

 Table 2: Seeded Sample versus Control Sample (219 couples, averages)

Bold values in parentheses are modeled values, whereas η is defined as the quotient of Precipitation Mass divided by Cloud Mass, and is interpreted as efficiency. A total of 865 flares were used in this sub-sample with an excellent timing (**81 %**), for an effective dose near **75 ice-nuclei per liter**, which might have reached higher levels in some individual cells. A very good increase of 88 % in precipitation mass together with an increase of 35 % in cloud mass illustrates that the seeded clouds grew at expenses of the environmental moisture (they are open systems) and used only a fraction of this moisture for their own maintenance. The increases in lifetime (57 %), area (29 %), volume (30 %), volume above 6 km (40 %), and precipitation flux (32 %) are notable. There are slight increases in maximum reflectivity (2 %), and in top height (3 %). The seeded sub-sample seemed 40 % more efficient than the control sub-sample. Results are evaluated as very good for this sub-sample. An increase of 88 % in precipitation mass for a control value of 827.1 kton in 219 cases means:

$\Delta_1 = 219 \ge 0.88 \ge 827.1$ kton = 159 399 kton = 129 272 ac-f

Large Clouds

The sub-sample of 146 large seeded clouds received a synergetic analysis. In average the seeding operations on these large clouds affected 65 % of their whole volume, with an excellent timing (90 % of the material went to the clouds in their first half-lifetime). A total of 1967 flares were used in this sub-sample for an effective dose near **95 ice-nuclei per liter**.

Also in average, large clouds were 25 minutes old when the operations took place; the operation lasted about 45 minutes, and the large seeded clouds lived 225 minutes (3 hours and 45 minutes).

Table 3 shows the corresponding results:

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	225 min	180 min	1.25	25
Area	940 km ²	855 km ²	1.10	10
Volume	3308 km ³	2827 km ³	1.17	17
Volume Above 6 km	1125 km ³	893 km ³	1.26	26
Prec.Flux	6923 m ³ /s	5818 m ³ /s	1.19	19
Prec.Mass	66 458 kton	47 133 kton	1.41	41

Table 3. Large Seeded Sample versus Virtual Control Sample (146 couples, averages)

An increase of 41 % in precipitation mass for a control value of 47 133 kton in 146 cases may mean:

 $\Delta_2 = 146 \ge 0.41 \ge 47 \times 133 = 2 \times 1381 \ge 2 \times 140 = 2 \times$

Type B Clouds

The sub-sample of 111 type B seeded clouds received a synergetic analysis. However, 5 of them were seeded during their senescence periods and did not offer any reaction. In average the seeding operations on these type B clouds affected 30 % of their whole volume, with a good timing (60 % of the material went to the clouds in their first half-lifetime). A total of 1551 flares were used in this sub-sample for an effective dose near **105 ice-nuclei per liter.**

Also in average, type B clouds were 110 minutes old when the operations took place; the operation lasted near 45 minutes, and the type B seeded clouds lived 275 minutes (4 hours and 35 minutes)

Table 4 shows the results:

Table 4. Type B Seeded Sample versus Virtual Control Sample (106 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	275 min	255 min	1.08	8
Area	1676 km ²	1566 km ²	1.07	7
Volume	5513 km ³	5105 km ³	1.08	8
Volume Above 6 km	1188 km ³	1100 km ³	1.08	8
Prec.Flux	$11822 \text{ m}^{3}/\text{s}$	10846 m ³ /s	1.09	9
Prec.Mass	91 678 kton	79 033 kton	1.16	16

An increase of 16 % in precipitation mass for a control value of 79 033 kton in 106 cases may mean:

 $\Delta_3 = 106 \text{ x } 0.16 \text{ x } 79 \text{ } 033 \text{ kton} = 1 \text{ } 340 \text{ } 400 \text{ kton} = 1 \text{ } 087 \text{ } 064 \text{ ac-f}$

The total increase: $\Delta = \Delta_1 + \Delta_2 + \Delta_3 = 3504476$ ac-f

Micro-regionalization

Increases in precipitation mass were analyzed county by county in an attempt to better describe the performance and corresponding results. **Table 5** below offers the details:

County Seeding	Initial Seeding	Extended (increase)	Acre-feet (increase)	Inches (increase)	Rain gage (season value)	% (increase)
Dallam	9	11	33 500	0.42	10.40 in	4.0
Hartley	9	11	79 900	1.02	10.34 in	9.9
Oldham	2	5	51 000	0.64		
Sherman	7	12	66 350	1.35	12.11 in	11.2
Moore	7	11	39 900	0.83	9.54 in	8.7
Potter		4	24 650	0.51		
Hansford	6	9	40 000	0.82	9.35 in	8.8
Hutchinson	3	6	12 900	0.27	16.81 in	1.6
Ochiltree	5	6	17 800	0.36	14.32 in	2.5
Gray		1	4 000	0.08		
Limpscomb	0 1	4	42 000	0.84	21.16 in	4.0
Moore	2	2	570	0.01		
Potter	4	5	13 450	0.28	10.34 in	2.7
Randall	3	4	6 450	0.13		
Hutchinson	2	4	54 500	1.15		
Carson	4	11	39 100	0.79	7.41 in	10.7
Armstrong	2	5	2 950	0.06	7.75 in	0.8
Roberts	4	7	66 250	1.34	10.11 in	13.3

Gray	3	7	68 750	1.39	7.16 in	19.4
Donley	2	2	48 200	0.97	7.81 in	12.4
Hemphill	2	5	5 700	0.12		
Wheeler	3	6	32 900	0.67	8.34 in	8.0
Gaines	3	5	15 600	0.19	9.0	2.0
Yoakum	3	3	5 500	0.13	13.4	1.0
Terry	4	5	7 300	0.15	11.21	1.3
Cochran			4 900			
Dawson			1 200			
Hockley			1 800			
Roosevelt	6	7	29 500	0.23	8.23	2.8
Lea	17	18	138 500	0.59	6.08	9.7
Glascock	8	13	168 300	3.10	18.69 in*	16.6
Sterling	14	21	191 100	3.90	23.89 in	16.3
Reagan	14	23	163 700	2.61	15.06 in*	17.3
Irion	17	25	188 700	3.36	17.92 in*	18.8
Tom Green	14	26	99 600**	2.46	19.82 in	12.4
Crocket	26	38	248 500	1.66	11.42 in	14.5
Schleicher	25	35	106 200	1.52	27.01 in	5.6
Sutton	13	20	82 500	1.06	20.43 in	5.2
Coke	1	2	9 000			
Menard	1	1	100			
Bandera	13	15	9 000	0.21	15.93 in	1.3

Medina	13	18	47 300	0.67	8.30 in	8.1
Frío	13	20	38 400	0.65	9.78 in*	6.6
Bexar	6	12	41 200	0.62	9.48 in	6.5
Atascosa	21	23	42 600	0.65	11.35 in	5.7
McMullen	19	24	91 600	1.54	10.29 in	15.0
Wilson	11	16	30 000	0.70	9.49 in*	7.4
Karnes	12	17	82 500	2.06	10.81 in	19.1
Live Oak	21	27	95 100	1.72	11.45 in	15.0
Bee	25	31	104 800	2.23	12.55 in	17.8
Goliath	1	1	550	0.01		
Guadalupe	1	1	350	0.01		
Uvalde	16	18	85 600	1.03	6.02 in	17.1
Zavala	19	23	165 500	2.39	9.64 in	24.8
Dimmit	18	23	101 000	1.42	6.54 in	21.7
La Salle	20	26	119 300	1.50	8.37 in	17.9
Webb	19	21	160 500	0.90	9.43 in	9.5
Total	494	696	3 428 120 a	nc-f		
Average				1.18 in	11.97 in	10.1 %

Final Comments

Results are evaluated as **excellent**. The main problem detected was the loss of radar data (31 operational days did not get proper files);

The micro-regionalization analysis showed increases per county; the average increase in precipitation, referred to an average seasonal value, is about **10.1 %**;

Radar estimations of precipitation should be considered as measurements of trend. Nevertheless, **seeding operations appeared to improve the dynamics of seeded clouds**.