ANNUAL EVALUATION REPORT 2006

Arquimedes Ruiz Columbié

Active Influence & Scientific Management

Cloud seeding operations 2006 began over Texas Weather Modification target area in March. This annual report is a compilation of the evaluation reports already made and published for five local projects. The SOAR and Trans-Pecos projects did not provide any data during 2006. Therefore, this annual report serves as a summary of the results obtained over NPGCD, Panhandle, WTWMA, STWMA, and SWTREA target areas (EAA target area is included in the last two), A total of **551 clouds** were seeded and identified by TITAN in **218 target area operational days**. Table 1 in page 1 summarizes the general figures:

Table 1 Generalities

First operational day: March 8th, 2006 (WTWMA) Last operational day: October 12th, 2006 (STWMA)

Net Number of operational days: 199

(Most active months May to August: ~ 80 % of the operation days, Less active month: March: ~ 1 % of the operation days)

According to the daily reports operational days were qualified as:

Sixty-five with excellent performance Seventy-four with very good performance Forty-nine with good performance Eleven with fair performance

Twelve with non proper data

Seven experimental days

Number of seeded clouds: 551 (298 small seeded clouds, 116 large seeded clouds, 131 type B seeded clouds, and 6 npf))

Missed Opportunities: 3 (0.5 % of the seedable conditions)

Small Clouds

Table 2 shows the results from the classic TITAN evaluation for the 298 small seeded clouds which obtained proper control clouds.

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	65 min	40 min	1.63	63 (48)
Area	65.0 km ²	42.3 km ²	1.54	54 (37)
Volume	188.8 km ³	115.6 km^3	1.63	63 (45)
Top Height	8.2 km	7.7 km	1.07	7 (4)
Max dBz	49.7	48.3	1.03	3 (2)
Top Height of max dBz	4.2 km	4.3 km	0.98	- 2 (0)
Volume Above 6 km	29.6 km ³	14.9 km^3	1.99	99 (67)
Prec.Flux	493.6 m ³ /s	297.7 m ³ /s	1.66	66 (50)
Prec.Mass	2217.4 kton	873.2 kton	2.54	154 (120)
CloudMass	150.6 kton	91.1 kton	1.65	65 (49)
η	14.9	9.6	1.56	56 (50)

 Table 2: Seeded Sample versus Control Sample (298 couples, averages)

Bold values in parentheses are modeled values, whereas η is defined as the quotient of Precipitation Mass divided by Cloud Mass, and is interpreted as efficiency. A total of **1344 flares** were used in this sub-sample with an excellent timing (**84 %**), for an effective dose near **90 ice-nuclei per liter**, which might have reached slightly higher levels in some individual cells. A very good increase of 120 % in precipitation mass together with an increase of 49 % in cloud mass illustrates that the seeded clouds grew at expenses of the environmental moisture (they are open systems) and used only a fraction of this moisture for their own maintenance. The increases in lifetime (48 %), area (37 %), volume (45 %), volume above 6 km (67 %), and precipitation flux (50 %) are notable. There are slight increases in maximum reflectivity (2 %), and in top height (4 %). The seeded sub-sample seemed 50 % more efficient than the control sub-sample. Results are evaluated as **excellent** for this sub-sample. An increase of 120 % in precipitation mass for a control value of 873.2 kton in 298 cases means:

$\Delta_1 = 298 \text{ x } 1.20 \text{ x } 873.2 \text{ kton} = 312 \ 256 \text{ kton} = 253 \ 240 \text{ ac-f}$

Large Clouds

The sub-sample of 116 large seeded clouds received a synergetic analysis. In average the seeding operations on these large clouds affected 62 % of their whole volume, with an excellent timing (96 % of the material went to the clouds in their first half-lifetime). A total of **1784 flares** were used in this sub-sample for an effective dose near **90 ice-nuclei per liter**.

Also in average, large clouds were 31 minutes old when the operations took place; the operation lasted about 41 minutes, and the large seeded clouds lived 205 minutes (3 hours and 25 minutes).

Table 3 shows the corresponding results:

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	205 min	175 min	1.17	17
Area	1051 km ²	887 km ²	1.18	18
Volume	3734 km ³	3022 km ³	1.24	24
Volume Above 6 km	1186 km ³	911 km ³	1.30	30
Prec.Flux	9652 m ³ /s	$7600 \text{ m}^{3}/\text{s}$	1.27	27
Prec.Mass	63 869 kton	53 590 kton	1.19	19

 Table 3. Large Seeded Sample versus Virtual Control Sample (116 couples, averages)

An increase of 19 % in precipitation mass for a control value of 53 590 kton in 116 cases may mean:

$\Delta_2 = 116 \text{ x } 0.19 \text{ x } 53 \text{ 590 kton} = 1 \text{ 181 } 124 \text{ kton} = 957 \text{ 891 ac-f}$

Type B Clouds

The sub-sample of 131 type B seeded clouds received a synergetic analysis. In average the seeding operations on these type B clouds affected 26 % of their whole volume with a very good timing (74 % of the material went to the clouds in their first half-lifetime). A total of **2100 flares** were used in this sub-sample for an effective dose near **115 ice-nuclei per liter.**.

Also in average, type B clouds were 125 minutes old when the operations took place; the operation lasted near 39 minutes, and the type B seeded clouds lived 265 minutes (4 hours and 25 minutes)

Table 4 shows the results:

Table 4. Type B Seeded Sample versus Virtual Control Sample (131 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	265 min	250 min	1.06	6
Area	1774 km ²	1654 km ²	1.07	7
Volume	6319 km ³	5809 km ³	1.09	9
Volume Above 6 km	1586 km ³	1431 km ³	1.11	11
Prec.Flux	$14626 \text{ m}^{3}/\text{s}$	13339 m ³ /s	1.10	10
Prec.Mass	152 740 kton	132 500 kton	1.15	15

An increase of 15 % in precipitation mass for a control value of 132 500 kton in 131 cases may mean:

 $\Delta_3 = 131 \ge 0.15 \ge 132 = 500 = 2603 = 603 = 2111 = 540 = 510 = 2111 = 540 = 510 = 2111 = 540 = 51$

The total increase: $\Delta = \Delta_1 + \Delta_2 + \Delta_3 = 3322671$ ac-f

Micro-regionalization

Increases in precipitation mass were analyzed county by county in an attempt to better describe the performance and corresponding results. **Table 5** below offers the details:

County Seeding	Initial Seeding	Extended (increase)	Acre-feet (increase)	Inches (increase)	Rain gage (season value)	% (increase)
Dallam	10	13	128 000	0.59	12.75 in	12.3
Hartley	11	18	153 200	1.96	8.06 in	24.3
Sherman	10	15	57 000	1.15	13.70 in	8.3
Moore	19	29	245 100	3.30	9.34 in	35.3
Hansford	11	16	86 700	1.76	14.45 in	12.2
Hutchinson	8	23	89 800	4.46	14.37 in	31.0
Ochiltree	5	8	76 700	1.57	12.22 in	12.8
Limpscomb	2	5	65 200	1.31	10.79 in	12.1
Hemphill		7	80 050			
Potter	17	21	202 200	4.17	14.68 in	28.4
Randall	3	11	116 200			
Carson	19	34	205 200	4.16	17.25 in	24.1
Armstrong	15	23	158 200	3.25	14.24 in	22.8
Roberts	9	19	151 300	3.08	11.42 in	27.0
Gray	2	18	137 100	2.77	15.74 in	17.6
Donley	11	19	80 400	1.62	15.25 in	10.6
Wheeler	1	9	54 300	1.11	14.19 in	7.8

Zavala	14	19	160 700	2.32	12.78 in	18.2
Uvalde	19	23	89 400	1.07	13.70 in	7.8
Gonzalez	7	7	16 300	0.29		
Guadalupe	2	3	7 500	0.21		
Goliad	4	6	3 200	0.06		
Bee	26	30	37 000	0.79	23.44 in	3.4
Live Oak	12	21	50 400	0.91	21.32 in	4.3
Karnes	22	29	106 200	2.65	15.81 in	16.8
Wilson	6	11	39 300	0.92	20.73 in	4.4
McMullen	14	21	53 300	1.32	14.48 in	9.1
Atascosa	27	33	128 200	1.96	11.83 in	16.6
Bexar	4	6	24 500	0.37	10.36 in	3.6
Frío	5	6	20 500	0.35	6.32 in*	5.5
Medina	5	7	8 400	0.12	7.69 in	1.6
Bandera	5	6	7 800	0.18	16.59 in	1.1
Sutton	14	24	256 800	3.31	12.51 in	26.5
Schleicher	24	30	239 500	3.43	15.71 in	21.8
Crocket	24	33	352 500	2.35	11.35 in	20.7
Tom Green	16	22	140 000**	1.72	16.01 in	21.5
Irion	26	31	267 400	4.77	13.05 in*	36.5
Reagan	17	23	177 800	2.84	12.44 in*	21.5
Sterling	18	28	158 400	3.22	13.58 in	23.7
Glascock	18	24	105 900	2.20	13.53 in*	16.3

Average				1.89 in	13.82 in	15.8 %
Total	551	815	3 244 400			
Webb	33	35	114 500	0.64	19.53 in	4.4
La Salle	19	23	113 000	1.42	14.54 in	9.8
Dimmit	13	17	124 200	1.75	9.57 in	18.3

Final Comments

Results are evaluated as **excellent**. The main problem detected was the loss of radar data (12 operational days did not get proper files, last year 31 operational days were lost);

The micro-regionalization analysis showed increases per county; the average increase in precipitation, referred to an average seasonal value, is about **15.8** %;

Radar estimations of precipitation should be considered as measurements of trend. Nevertheless, **seeding operations appeared to improve the dynamics of seeded clouds**.