State of Texas

ANNUAL EVALUATION REPORT 2016

Dr. Arquímedes Ruiz Columbié

Active Influence & Scientific Management

Cloud seeding operations 2016 began over the Texas Weather Modification Target Area in March (March 7th, first operational day for the WTWMA target area). This annual report is a compilation of the evaluation reports already made and published for four local projects: Panhandle, WTWMA, TPWMA, and STWMA target areas (EAA target area is included in the last one). A total of **306 clouds** were seeded and identified by TITAN in **119 target area operational days**. Table 1 summarizes the general figures:

Table 1: Generalities

First evaluated operational day: March 7th, 2016 (WTWMA)

Last operational day: November 11th, 2016 (STWMA) Season: 250 days

Net Number of operational days: 119

Most active period: May to September: 103 ~ 87 % of the operational days, Less active months: March: 2 ~ 2 % of the operational days November: 2 ~ 2 % of the operational days

According to the daily reports, operational days were qualified as:

Seventy-eight with excellent performance Twenty-eight with very good performance Twelve with good performance One with fair performance

Number of seeded clouds: 306

(179 small seeded clouds, 81 large seeded clouds, 46 type B seeded clouds)

Missed Opportunities: none (with lifespan longer than 1 hour)

Small Clouds

Table 2 shows the average results from the classic TITAN evaluations for the 179 small seeded clouds which obtained proper control clouds.

 Table 2: Seeded Sample versus Control Sample (179 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	65.4 min	42.7 min	1.53	53 (40)
Area	65.6 km ²	42.5 km ²	1.54	54 (39)
Volume	$220.0~\mathrm{km}^{3}$	132.3 km^3	1.66	66 (42)
Top Height	8.9 km	8.1 km	1.10	10 (3)
Max dBz	51.7	49.9	1.03	3 (1)
Top Height of max dBz	3.7 km	3.7 km	1.00	0 (-1)
Volume Above 6 km	57.3 km ³	31.0 km^3	1.85	85 (45)
Prec.Flux	$446.1 \text{ m}^3/\text{s}$	$264.3 \text{ m}^3/\text{s}$	1.69	69 (49)
Prec.Mass	2067.0 kton	775.7 kton	2.66	166 (126)
CloudMass	168.6 kton	95.5 kton	1.76	76 (45)
η	12.3	8.1	1.51	51 (56)

Bold values in parentheses are modeled values, whereas η is defined as the quotient of Precipitation Mass divided by Cloud Mass, and is interpreted as efficiency. A total of 1181 AgI and 100 hygroscopic flares were used in this sub-sample with an excellent timing (95 %), for an effective AgI dose about 65 ice-nuclei per liter, which might have reached slightly higher levels in some individual cells. An excellent increase of 126 % in precipitation mass together with an increase of 45 % in cloud mass illustrates that the seeded clouds grew at expenses of the environmental moisture (they are open systems) and used only a fraction of this moisture for their own maintenance. The increases in lifetime (40 %), area (39 %), volume (42 %), volume above 6 km (45 %), and precipitation flux (49 %) are notable. There were slight increases in maximum reflectivity (1 %), and in top height (3 %). The seeded sub-sample seemed 56 % more efficient than the control sub-sample. Results are evaluated as excellent for this sub-sample.

An increase of 126 % in precipitation mass for a control value of 775.7 kton in 179 cases means:

$$\Delta_1 = 179 \text{ x } 1.26 \text{ x } 775.7 \text{ kton} \approx 174 951 \text{ kton} \approx 241 886 \text{ ac-f}$$
 (mean layer: 14.8 mm \approx 0.59 in)

Large Clouds

The sub-sample of 81 large seeded clouds received a synergetic analysis. In average the seeding operations on these large clouds affected 82 % of their whole volume, with a perfect timing (100 % of the material went to the clouds in their first half-lifetime). A total of **2066 AgI and 185 hygroscopic flares** were used in this sub-sample for an effective silver iodide average dose near **95 ice-nuclei per liter**.

Also in average, large clouds were 23 minutes old when the operations took place; the operation lasted about 36 minutes, and the large seeded clouds lived 250 minutes (4 hours and 10 minutes).

Table 3 shows the corresponding results:

 Table 3: Large Seeded Sample versus Virtual Control Sample (81 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	250 min	200 min	1.25	25
Area	1397 km^2	$1140~\mathrm{km}^{2}$	1.23	23
Volume	$6186 \mathrm{km}^3$	5057 km^3	1.22	22
Volume Above 6 km	2315 km ³	1897 km ³	1.22	22
Prec.Flux	$13\ 172\ m^3/s$	$9900{\rm m}^3/{\rm s}$	1.33	33
Prec.Mass	90 942 kton	56 373 kton	1.61	61

An increase of 61 % in precipitation mass for a control value of 56 373 kton in 81 cases implies:

$$\Delta_2 = 81 \times 0.61 \times 56373 \text{ kton} \approx 2785390 \text{ kton} \approx 2258951 \text{ ac-f}$$
(mean layer: 24.6 mm $\approx 0.97 \text{ in}$)

Type B Clouds

The sub-sample of 46 type B seeded clouds also received a synergetic analysis. In average the seeding operations on these type B clouds affected 21 % of their whole volume with a quasi-excellent timing (87 % of the material went to the clouds in their first half-lifetime). A total of **1001 AgI and 82 hygroscopic flares** were used in this sub-sample for an effective silver iodide average dose about **90 ice-nuclei per liter.**

Also in average, type B clouds were 118 minutes old when the operations took place; the operation lasted about 32 minutes, and the type B seeded clouds lived 295 minutes (4 hours and 55 minutes)

Table 4 shows the results:

Table 4: Type B Seeded Sample versus Virtual Control Sample (46 couples, averages)

Variable	Seeded Sample	Control Sample	Simple Ratio	Increases (%)
Lifetime	295 min	285 min	1.04	4
Area	2102 km^2	2002 km^2	1.05	5
Volume	9130 km^3	8642 km^3	1.06	6
Volume Above 6 km	2738 km^3	2587 km ³	1.06	6
Prec.Flux	$14 438 \text{m}^{3}/\text{s}$	$13\ 500\ m^3/s$	1.07	7
Prec.Mass	121 347 kton	110 372 kton	1.10	10

An increase of 10 % in precipitation mass for a control value of 110 372 kton in 46 cases implies:

$$\Delta_3 = 46 \times 0.10 \times 110 \ 372 \ kton \approx 507 \ 711 \ kton \approx 411 \ 754 \ ac-f$$
 (mean layer: 5.3 mm ≈ 0.17 in)

The total increase: $\Delta = \Delta_1 + \Delta_2 + \Delta_3 = 2812591$ ac-f ≈ 2.81 millions ac-f

(~790 ac-f per small storm; ~27 900 ac-f per large storm; ~8 950 per B storms)

4

Micro-regionalization

Increases in precipitation mass were analyzed county by county in an attempt to better describe the performance and corresponding results. **Table 5** below offers the details:

Table 5: Results per county

Panhandle Ground Water Conservation District Program

County	Initial se	Extended eding	Acre-feet (increase)	Inches (increase)	Rain gage (season value) (% (increase)
Armstrong	12	15	112 800	2.28	21.11 in	10.8
Carson	9	15	117 700	3.60	20.68 in	17.4
Donley	6	16	77 400	1.55	23.40 in	6.6
Gray	6	20	99 800	2.07	25.16 in	8.2
Potter	3	6	83 000	1.71	20.06 in	8.5
Roberts	7	15	65 700	1.32	18.88 in	7.0
Wheeler	2	11	52 800	1.10	24.21 in	4.5
Outside		9	99 700			
Sub-total	45	98	708 900 (~	14 % outside t	the target area)	
Local Avera	nge (only	for the bold va	ılues)	1.95 in	21.93 in	9.0 %

West Texas Weather Modification Association Program

County	Initial	Extended	Acre-feet	Inches	Rain	%
	Sec	eding	(increase)	(increase)	(season value)	(increase)
Sterling	14	15	110 500	1.39	18.13 in	7.7 %
Reagan	26	28	174 700	2.77	19.33 in	14.3 %
Irion	19	22	147 600	2.62	21.42 in	12.2 %
Tom Green	9	11	111 300	2.73	27.05 in	10.1 %
Crocket	16	17	172 700	1.14	18.41 in	6.2 %
Schleicher	16	18	165 900	2.34	25.89 in	9.0 %
Sutton	9	11	92 800	1.21	21.50 in	5.6 %
Outside TA	2	7	~ 80 200	(~ 7.6 % o	f the total amour	nt)

Sub-total	111	129	1 055 700 ac-f			
Local Aver	age (only f	or the bo	ld values)	2.02	21.67 in	9.3 %

South Texas Weather Modification Association Program

County	Initial See	Extended ding	Acre-feet (increase)	Inches (increase)	Rain Gage (season value)	% (increase)
Uvalde	6	10	80 500	0.94	22.47 in	4.2
Bandera	3	5	38 200	1.05	23.00 in ^(*)	4.6
Medina	8	13	43 800	0.57	22.59 in	2.5
Bexar	5	11	26 400	0.40	34.99 in	1.1
Frío	8	11	40 700	0.70	22.93 in	3.1
Atascosa	27	40	93 500	1.41	29.88 in ^(*)	4.7
McMullen	9	17	73 100	1.23	24.76 in	5.0
Wilson	10	18	36 600	0.86	31.46 in	2.7
Karnes	21	27	48 400	1.22	28.11 in	4.3
Bee	14	17	56 800	1.21	30.09 in ^(*)	4.0
Outside	9	15	18 400 (3.3	% of the total	l amount)	
Sub-total	120	184	556 400			
Local Aver	age			0.96	27.03 in	3.6

Trans-Pecos Weather Modification Association

Local Average

County	Initial	Extended	Acre-feet	Inches	Rain Gage	%
	Seed	ding	(increase)	(increase)	(season value)	(increase)
Culberson	1	2	9 200	0.04	9.79	0.4 %
Reeves	15	17	68 900	0.48	9.01	5.3 %
Pecos	9	13	79 200	0.33	6.90	4.8 %
Ward	4	6	42 000	0.95	9.67	9.8 %
Loving	1	2	13 500	0.37	11.44	3.2 %
Outside	11	- CC 1	,		e total increase))
(downwind	effect over Win	ikier, Ector and	Crane Count	ies)	
Sub-total	30	41	265 800			

0.43 in 9.36 in 4.7 %

Table 6: Synoptic Summary

Program	Initial seedin	Extended ng	Acre-feet increase	Increase in inches	Season Rain in inches	%
PGCD	45	98	708 900	1.95 in	21.93 in	9.0
WTWMA	111	129	1 055 700	2.02 in	21.67 in	9.3
STWMA	120	184	556 400	0.96 in	27.03 in	3.6
TPWMA	30	41	265 800	0.43 in	9.36 in	4.7
Totals	306	452	2 586 800 ac-f			
Averages				1.34 in	20.00 in	6.7 %

Outside the target areas (downwind effect): 251 300 ac-f ($^{\sim}$ 10 % of the total increase)

Total amount of flares used: 4248 (AgI) plus 367 (Hygroscopic)

Final Comments

- 1) Results are evaluated as **excellent** (no miss-opportunities, 95 % average timing, 75 in/l average glaciogenic dose).
- 2) The micro-regionalization analysis showed increases per county; the average increase in precipitation, referred to an average seasonal value, was about 7.0 %; a total increase of about 2.6 million acre-feet should be considered as a great help to fresh water natural resources.
- 3) Radar estimations of precipitation should be considered as measurements of trend. Nevertheless, **seeding operations improved the dynamics of seeded clouds**.
- 4) During the 2016 cloud seeding campaign in Texas, hygroscopic seeding played an important role in the operations. When possible, **it is important to perform dual seeding operations in order to obtain the desire synergy.** Cloud base temperature is an excellent indicator of hygroscopic seeding opportunities: cloud bases colder than about 10 °C may indicate the presence of too many CCN (cloud condensation nuclei) and the needs to potentiate the droplet collision-coalescence mechanism for the formation of precipitation.